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We discuss some aspects of the continuum limit of some lattice models, in par- 
ticular the 2D O(N) models. The continuum limit is taken either in an infinite- 
volume or in a box whose size is a fixed fraction of the infinite-volume correla- 
tion length. We point out that in this limit the fluctuations of the lattice 
variables must be O(1) and thus restore the symmetry which may have been 
broken by the boundary conditions (b.c.). This is true in particular for the so- 
called super-instanton b.c. introduced earlier by us. This observation leads to a 
criterion to assess how close a certain lattice simulation is to the continuum 
limit and can be applied to uncover the true lattice artefacts, present even in the 
so-called "perfect actions". It also shows that David's recent claim that super- 
instanton b.c. require a different renormalization must either be incorrect or an 
artefact of perturbation theory. 
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1. I N T R O D U C T I O N  

Lat t ice  field theory  can be cons ide red  as q u a n t u m  field t heo ry  wi th  a 

cutoff. O f  course  the chal lenge  is to  d ispose  of  the cutoff. F r o m  the  po in t  

of  view of  the lat t ice mode l  tha t  m e a n s  let t ing the  co r r e l a t i on  length  

become  large. C o m b i n i n g  this r e q u i r e m e n t  wi th  the desire  of  w o r k i n g  in a 

large t h e r m o d y n a m i c  box,  one is qu ick ly  facing forb idd ing  costs  in C P U  

t ime and  m e m o r y .  A l t h o u g h  m a n y  techn iques  have  been  p r o p o s e d  to  cir- 

c u m v e n t  this l imi ta t ion,  genera l ly  speak ing  they fall in to  the fo l lowing two 

categories :  
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1. Choice of a better lattice action 

2. Finite size sealing 

Using the first technique one hopes that by complicating sufficiently 
the lattice action the cutoff effects can be reduced so that continuum 
behavior can be observed already at a correlation length of a few lattice 
units with the perfect action of Hasenfratz and Niedermayer. ~) 

With the second technique one simulates the system in a box of finite 
"physical size," i.e. a box whose linear extent L is a certain fraction of the 
thermodynamic (=  infinite volume) correlation length ~. The idea is then 
to approach the continuum limit by considering a sequence of lattices with 
fixed ratio z = L/~ and extrapolating to the limit ~-~ oo, using certain 
assumptions about the asymptotic behavior. Thereby it is believed that the 
so-called lattice artefacts can be eliminated. A notable example of this 
philosophy is ~ the work of the "Alpha Collaboration" and its precursors. ~2) 
This procedure raises some questions, since the proposed form of the 
approach to the limit does not have a solid theoretical basis and different 
assumptiohs about it lead to quite different estimated values of this limit. ~3) 

The crucial question is: do these techniques manage to reflect the true 
continuum behavior up to some small corrections, or are they dominated 
by lattice artefacts? One way to assess this lies (maybe surprisingly) in 
studying the dependence of the data upon the boundary conditions (b.c.) 
and possibly other constraints on individual spins. 

In ref. [4] we introduced "superoinstanton b.c." (s.i.b.c.) that are 
characterized by fixing the spins at the boundary and in addition a spin in 
the middle of the lattice. We pointed out that in the thermodynamic limit 
one has to obtain the same results with s.i.b.c, as with more conventional 
b.c.. In this paper we will show that the same is true in the continuum limit 
even when it is taken in a box of "finite physical size". The practical use of 
this observation lies in the fact that one can check to what extent this inde- 
pendence is fulfilled for particular coupling parameters and box sizes. 
Although we do not present any numerical data in this paper, our conclu- 
sion is that recent claims which appeared in the literature regarding the 
continuum limit of 2D O(N) models and 4D gauge theories are unjustified 
in that they would not pass this test; likewise is the claim that by employ- 
ing perfect actions one can observe continuum behavior already at small 
correlation length. 

Our observation that super-instanton b.c. must lead to the same con- 
tinuum limit as say Dirichlet b.c. answers also David's ~5) recent claim that 
they require a different renormalization: they cannot possibly do so. Conse- 
quently, if in perturbation theory (PT) one finds, as he claims, that in fact 
one does need additional renormalizations with s.i.b.r then that is another 
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proof that in these models PT fails to produce the correct asymptotic 
expansion. 

Before starting our discussion, we remind the reader of the general 
procedure used to obtain a continuum limit of a lattice model: first one 
has to find a point in parameter space where at least one dynamically 
generated correlation length, called ~, diverges. Then the continuum 
correlation functions can be obtained by driving the system into this criti- 
cal point, using ~ as the standard of length; calling the lattice fields s(x), 
this means that the n-point continuum correlation function (Schwinger 
function) is given by 

S,(xl,..., x , )  = lim Z(~) - ' /z <S(XI~),...,S(Xn~)> (1) 

where Z(~) will be a suitably chosen field strength renormalization con- 
stant. This will produce a massive continuum limit (of mass 1 with the 
choice made in Eq. (1)). Alternatively one can construct a massless con- 
tinuum limit by sitting right at a critical point, introducing an arbitrary 
length standard Lo that is sent to oo and defining 

S . ( x l , . . . , x , ) =  lim Z(Lo)-"/Z<s(xlLo)...s(x, Lo)> (2) 
L o  --..~ oo  

At least if the lattice fields s(x) are bounded, it is unavoidable that the 
field strength renormalizations Z(~) -1;2 diverge for ~ ~ oo, if the con- 
tinuum limit is to be a quantum field theory which has by necessity short 
distance singularities in its Schwinger functions. 

2. GAUSSIAN COMPUTATIONS 

To get a feeling for the situation, it is useful first to consider free scalar 
fields q~ on the lattice 7/~ with mass m (including the case m = 0). First we 
look at the continuum limit on an infinite lattice: the field is described by 
a Gaussian measure with covariance 

C ( x -  y )  = ( - A  Jr" m2) -1 (x, y) (3) 

where A is the lattice Laplacian. To obtain the continuum limit, we have 
to drive the system into the critical point m = 0 ,  using ~ = 1/m as the 
standard of length. In other words, we study correlation functions at 
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distances that are fixed fractions of the correlation length ~ = 1/m, e.g. 

(o(x) - Y )  (4) 
m 

and send m ~ 0. 
In dimension D >i 2 this 2-point function is O(mD--2), SO to get a non- 

trivial continuum limit in D >  2 one has to introduce a divergent field 
strength renormalization Z(m) and define 

t2~r(X) = tP ( x )  Z(m) -I/2 (5) 

with Z ( m ) =  O(m~ Then one obtains the continuum limit (for x :/: y) 

1 ~ d o p e  *'O'-y) 
lim ( ~ , ( x )  r - (2zr)n p2 +--------~ (6) m--*0 

(The integral does not exist in the classical sense, but has to be interpreted 
as follows" assuming without loss of generality that Xo-yo:/:O, one 
integrates first over Po using the calculus of residues; the remaining integral 
is then absolutely convergent. To show convergence of the renormalized 
lattice two-point function to the continuum limit, one uses the same trick. 
After the first integration has been carried out, the dominated convergence 
theorem can be used.) 

In D = 2  no field strength renormalization is necessary. But in all 
D>~2 we find for x:/:y  

lim ( ( ~ ( x ) -  #~(y)) 2) = ~ ,  (7) 
m--*O 

which shows that the fluctuations of the renormalized fields diverge. In 
D I> 3 this divergence is due to the field strength renormalization, whereas 
in D = 2 it is due to the fact that limm_.o C(0)=  oo because of the loga- 
rithmic infrared (IR) divergence. 

It is easy to convince oneself that the fields ~(x/m) and ~(y /m)  become 
statistically independent in the continuum limit for x r y: this is true for 
any b.c. and any D/> 2 and is due to the fact that C ( ( x -  y)/m)))/C(O) goes 
to zero. 

Slightly less trivial is the case of an exponential of a free field 

~t'( x ) = d q~(~) ( 8 ) 
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We limit ourselves to the study of D = 2, because that is the most interest- 
ing case, and for D > 2 the continuum fields would become non-tempered, 
i.e. the correlation functions would develop exponential singularities. Even 
though the fields ~ did not require renormalization in 2D, their exponen- 
tials do, as can be found essentially already in Coleman's paper. (7) If we 
define 

~,.(x) = Z( m ) - 1/2 ~( x/m ) (9) 

with Z(m)= m q2/2~, the correlation functions of the renormalized fields ~r 
will have nontrivial continuum limits. But it is interesting to look at the 
continuum limit from the point of view of the lattice fields ~(x/m): then we 
find restoration of the 0(2) symmetry in accordance with the Mermin- 
Wagner theorem tg) in the limit m ~ 0. Explicitly 

( ~ ( x )  ~ ( y ) * l = e x p ( _ q Z ( C ( O ) _ C ( X m Y ) )  ) (10) 

which goes to 0 as m--, 0 because C(0)=  O( I ln(m)l ). 
One can also establish that the fields ~(x/m), ~U(y/m) become statisti- 

cally independent in the limit m - ,  0 for x q: y. Furthermore each field 
~(x/m) will be distributed uniformly on the unit circle in this limit. To see 
this, it suffices to consider 

( ~( xlm ),,x ~( ylm )", ) = e -( q2)/z t c(o )(,,2 + ,2) + 2~x,,y c((x - y )/,,,)) ( l l )  

2 2-7/: 0 this goes to zero, while for nx, rly~_ Z. It is easy to see that for n x + ny 
for nx = 0 = ny it is equal to 1. Thus we have 

lim ( ~(x/m)"x ~(y/m)",)  =6.xO6~, o (12) 
m ---* 0 

from which the claim follows. 
Next we turn to the continuum limit in a box. The linear extent L is 

to be kept fixed in "physical units," i.e. we choose L = l/m with l fixed. We 
may use Dirichlet, periodic or any other classical b.c.. The discussion of the 
continuum limit proceeds as above and the equations are changed only by 
replacing C ( x -  y) with Cbc(x, y), the covariance with the appropriate b.c.; 
we find as above: 

(1) In D > 2 the Gaussian field r requires a wave function renor- 
malization, leading to divergent fluctuations of the massive free field in the 
co n tinuum limit. 
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(2) In D = 2, r requires no wave function renormalization, but the 
fluctuations of the free massive field diverge in the continuum limit due to 
the IR divergence of Cb~(X, x). 

(3) In D = 2 the renormalized exponentials gtr(x) of the free field 
require a wave function renormalization; their expectation values are not 
O(2) symmetric in accordance with the symmetry breaking mass term. 

(4) In D = 2 the unrenormalized exponentials 7t(x) show restoration 
of the 0(2) symmetry, because from the point of view of the lattice (i.e. 
measured in lattice units) the box is becoming infinitely large and the sym- 
metry breaking by the mass term disappears in the limit. The fields 
gt(x~/m) become statistically independent for different xi. 

Next we turn to s.i.b.c.. They are defined as 0 Dirichlet b.c. at the 
boundary of the box, at distance O(l/m) from the origin, together with the 
constraint r 0 where x~ is a point in the "middle of the lattice," e.g. 
the origin. The Green's function ( r 1 6 2  with these b.c. can be 
expressed in terms of the Dirichlet Green's function CD as fol lows:  (4's) 

CD(X, x~) CD(x~, y) 
(r  r = CD(X, y) -- (13) Cz,(x~, x~) 

More generally we may require that ~ (xc )=  a, whereas at the edges of the 
box we still have 0 Dirichlet b.c.. In this case the two-point function 
becomes 

< aS(x)aS(y)>,.,.b.~. 

= CD(x, y ) -  Co(X, Xc) Co(xc, Y) a2 Co(x, xc) Co(xr y) 
CD(Xr Xc) + CD(x~, x~) 2 (14) 

and there is also a nonvanishing one-point function 

C,,(x~, x) 
(r (15) 

C~,( x~, x~) 

Looking at Eqs. (13-15) one sees at once that in 2D, if we replace x 
by x/m etc., the extra terms go to zero because their denominators blow up 
as m ~ 0. In D > 2, after field strength renormalization, and replacing x by 
x/m etc, the extra terms go to zero because the numerators do not have 
enough renormalization factors. It should not come as a surprise that the 
additional constraint q~(x~)= a does not leave any trace in the continuum 
limit of the renormalized fields, because in the continuum it is impossible 
to impose a Dirichlet condition at a point in D > 1 (or more generally on 
a set of zero capacity). 
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It is clear from Eqs. (8) and (9) that the situtation is analogous for the 
exponential fields 7 t (x /m)and  ~g,(x). 

There is another continuum limit that can be discussed: we can put the 
massless Gaussian field in a box of size L, with 0 Dirichlet b.c. to avoid 
trouble from the zero mode, and take L as the standard of length. The con- 
tinuum limit is now defined by the limit L---, oo of the correlations of the 
renormalized fields 

(Dr( X ) = Z( L ) - ' /2 (D( x L  ) 

with Z(L) = L 2 - D (D >I 2), or (only in 2D): 

(16) 

7t,(x) = Z(L)  -1/2 7t(xL) = Z(L)  -1/2 e iq*(xL) (17) 

with Z(L) = L -q2/2,'. 
Also in this massless case we can consider s.i.b.c.. The results are 

analogous to the massive case discussed above: 

(1) The renormalized fields (D, show divergent fluctuations as in 
Eq. (5) in the continuum limit. 

(2) The renormalized fields 7 t, (D = 2) show no O(2) symmetry. 

(3) The lattice fields 7 t show restoration of the O(2) symmetry. 

(4) S.i.b.c. become identical to Dirichlet b.c. in the continuum limit. 

3. T W O - D I M E N S I O N A L  O(N) MODELS 

In this section we want to show that what we found for the Gaussian 
models also holds more generally, in particular for the 2D O(N) models. 
These models describe configurations of classical spins {s(x)}, s ( x ) ~ R  ~t, 
s (x )=  1, x cA, where A is the lattice Z D or a finite part of it (like a box 
of size L). For definiteness we may consider the standard nearest neighbor 
action (s.n.n.a.) 

S= ~ s(x).s(y) (18) 
(xy )  

(even though that is inessential) and the Gibbs state induced by it via the 
Boltzmann factor exp(-f lS) .  

First let us discuss the xy-model ( N - 2 ) .  This model has the famous 
Kosterlitz-Thouless transition from a massive phase at fl<fl~n to a 
massless one at fl >i flc, t [ 10, 11 ]. A massive continuum limit is constructed 
by driving fl ~ flc, t from below, using the correlation length ~ = 1/m as the 
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unit of length, as in the Gaussian models above. For instance the two-point 
Schwinger function becomes 

S2(x, y ) =  lim Z(f l )  - l  ( ( s ( x ~ ) . s ( y ~ ) ) )  
# -"&r,-- 0 

(19) 

First let us point out that there has to be a field strength renormalization 
Z(f l)  -~ that diverges for f l ~ f l c r t - O ,  to compensate for the fact that 
without it the two-point function would go to zero. This can be seen as 
follows: let Arc be a box of size r~ within the infinite lattice Z n. Then the 
root mean square (rms) magnetization in that box is given by 

/~If--s - l(r~)2 J ( (X )2) s(x)  . (20) 
, Ar~ 

In the 0(2) model it follows from Ginibre's inequalities [ 12] that the two- 
point function is everywhere nonnegative for a large class of b.c. (including 
periodic and Dirichlet b.c.). The same is then true for the thermodynamic 
limit obtained using these b.c.. It follows that Mr,,,= will be bounded by 
~/iz / (r~)  2 (remember that there is no subtraction of a disconnected con- 
tribution because the 0(2) symmetry is unbroken). Now it is well known 
that 

Z 
~--5= O(~-") (21) 

for f l-~ flcrt- 0, and according to the Kosterlitz-Thouless theory ('~ r/= 1/4 
(reasonably well confirmed by the numerical simulations). ('3'~4) This 
implies that the rms magnetization over a box of size r~ goes to 0 in the 
continuum limit. But the M2,,~ is nothing but a double average of the two- 
point functions over that box, and under the positivity assumption made 
above it follows that 

lira ( ( s ( x ~ ) .  s ( y ~ ) ) )  = 0 #.-> pm-o (22) 

for x-~ y. On the way we have learned that the correlation between two 
spins located at a distance x~ will go to zero as ~---, oo, contrary to what 
one might have guessed naively (but in agreement with the  Omstein- 
Zernike behavior as discussed below). 

It should be pointed out that the existence of a nontrivial continuum 
limit requires that the same field strength renormalization that is needed 
for the two-point function also works for the higher n-point functions. 
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Composite fields (products of fields a the same point) will require field 
strength renormalization as well (cf. Eq. (11)). Conversely, since the field 
strength renormalization has to diverge in the continuum limit, all the 
correlations of the unrenormalized lattice spins at "physical" distances will 
go to zero in that limit, and those spins will become statistically independent. 

Next let us turn to the continuum limit in a box Are of size r~. As 
before we find that the rms magnetization is given by 

Mrms-(r4) 2 ~ s(x) =%'2 r (23) 
x ~ Ar~)r~ 

Note that we denote by ~ the infinite volume correlation length and by Zre 
the susceptibility in the finite box. We invoke now the hypothesis of finite 
size scaling (FSS), (15) which says that 

lim 2',r = f( r )  (24) 
P~&r,--O Zoo 

to conclude as before that also the two-point function in the box will go 
to zero in the limit ~ ~ ~ .  

As in the Gaussian models, one can also discuss a continuum limit in 
the massless (KT) phase. Since there is no mass to set the scale, one 
chooses an arbitrary diverging scale unit Lo and considers the limit 

S2(x, y)  = l im Z(Lo) -1 ((s(xLo). s(yLo))) 
Lo---~ oo 

(25) 

Note that fl~flcrt is kept fixed in this limit. It is known ~1t'2~ that r />0  
(KT theory predicts in fact 1/4 >i r/> 0), so we can conclude as above that 
the spin-spin correlation without field strength renormalization will vanish 
in the continuum limit and a similar argument can be made for the con- 
tinuum limit in a finite box of sixe Lo. 

This conclusion can in fact be drawn already on account of the 
Mermin-Wagner theorem (9) alone, which is valid for any f l< oo. This 
theorem implies the vanishing of the rms magnetization in the limit of 
infinite box size, simply because the two-point function goes to zero as the 
separation of the points goes to infinity. By this theorem the 0(2) sym- 
metry of the unrenormalized spins is restored in the limit, no matter what 
symmetry breaking b.c. we used. 

Now we are ready to discuss s.i.b.c, for the O(2) model. Again they are 
defined by fixing a spin in the middle in addition to imposing Dirichlet 
(fixed) b.c. at the boundary of our box. Because the spin in the middle 
becomes uncorrelated with all the spins that have a distance O(~) or 
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O(Lo), respectively, in both limits (massive and massless) discussed above, 
s.i.b.e, become equivalent to Dirichlet b.c.. 

Let us now extend the discussion to the O(N) models with N > 2. Else- 
where (~6'~7) we have presented arguments for the existence of a finite tic,, 
such that for fl >I fl , ,  there is a massless phase in all these models. Accept- 
ing this point of view, the discussion can be taken over from the 0(2) 
model. 

One remark should be made, however, concerning the nonnegativity 
of the two-point function that is needed for the argument to go through: 
if we condition on the configuration of the "transverse" components of the 
spins (s• = (s~,..., s~v_~)), it follows by Ginibre's inequalities that 

(s~r(0) s~v(x)) ts• >t0 (26) 

and by averaging over the transverse components with the appropriate 
measure one sees that (su(0)s~t(x))>10 and using O(N) invariance, it 
follows that the invariant two-point function is nonnegative. 

So if tic, < ~ ,  the arguments based on the rms magnetization for the 
0(2) model also apply to the ON) models with N >  2. 

The conventional wisdom--with which we disagree--states, however, 
that the model is critical only at fl = ~ .  We want to point out that even 
if we accept this point of view for the sake of the argument, the same con- 
clusions as before hold. 

Since by assumption there is no massless phase, we only have to dis- 
cuss the massive continuum limit. According to the conventional wisdom 
the correlation length ~ and the magnetic susceptibility Z behave as follows 
for fl - ~  C~; (18) 

ot7. f l  - I /( N - -  2 ) e 2 n # / (  N -  2) 

X oC f l - (  N+ l )/(N-- 2)e47ql/tN-- 2) 

(27) 

(28) 

which would imply 

Z (29) 

Since this vanishes in the limit fl ~ oo, we obtain again the conclusion 
that in the limit ~--* oo the spin-spin correlations at distances that are fixed 
fractions of the correlation length will vanish and the system, from the 
point of view of the lattice spins, restores the O(N) symmetry in that limit. 

Therefore quite generally, and independently of the question whether 
the conventional scenario is true or false, the existence of a continuum limit 
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describing a quantum field theory enforces a divergent field strength renor- 
malization, and as above we conclude that therefore the lattice spins at 
distances proportional to the correlation length will become statistically 
independent of each other. 

Another understanding of this important point is provided by PT. 
Indeed tree level PT (which is uncontested by anybody) can be used to 
estimate the scale over which the spins stay well aligned: in a region where 
the fluctuations of the spins are small, they are to a good approximation 
Gaussian, i.e. given by tree level PT. The Gaussian approximation breaks 
down, however, where it predicts fluctutations that are O(1 ). This happens 
at a scale 

~e r=  e2,~#/(N-l) (30) 

so the scale where fluctuations remain small cannot grow faster than this 
length ~er. This length is becoming arbitrarily small with respect to the 
correlation length ~, whether we subscribe to the conventional scenario 
(Eqs. (27, 28)) or believe in the existence of a critical point at finite/5'. So 
this consideration also leads to the conclusion reached earlier that the spins 
decorrelate over distances of the order O(~) as ~ ~ oo. Conversely, if the 
distance over which the spins remain well aligned were of the same order 
as the correlation length ~ then the O(N) symmetry could not possibly be 
restored at finite fractions of ~, as it must, according to the arguments 
presented before. 

Likewise it follows that s.i.b.c, are equivalent to Dirichlet b.c. in the 
continuum. An easy generalization is that one may also fix any finite 
number of spins provided the distances between them are fixed fractions of 
the correlation length; in the continuum limit this will have no effect on the 
correlation functions. This statement has to be interpreted in the sense of 
distributions, because it is not true for certain exceptional points, for 
instance if some of the spins whose correlations are considered happen to 
be the fixed ones. But these exceptional points do not play any role if we 
smear with test functions. An illustration of these phenomena is easily 
obtained by Gaussian calculations along the lines of Section 2. 

The necessity of a divergent field strength renormalization (and the 
absence of spontaneous symmetry breaking at any/?, which in 2D follows 
from the Mermin-Wagner 'theorem), is also in full accordance with the 
so-called Ornstein-Zernike behavior of correlations at large distance (see 
for instance ref. [ 19]); one can even obtain a prediction for the behavior 
of the field strength renormalization from the Ornstein-Zernike behavior. 
The Ornstein-Zernike postulate, which has been proven in some cases like 
the Ising model, (~9) but is expected to hold generally in massive models, 
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since it corresponds to the requirement that the model describes massive 
particles with an isolated mass shell, says: 

< s(x~), s(y~)> --- ~ 2 - o - ,  Ix - y l - t o - ~ ) / ~  exp( - I x -  yl) (3]) 

for Ix -Yl  >> 1. It can be seen immediately that this expression times a 
field strength renormalization factor Z -~ has a continuum limit if and 
only if 

Z =  O(~ 2-D-~) (32) 

The Gaussian models discussed in the previous section have r/=0; so 
Eq. (30) generalizes the result found there. From the so-called infrared 
bounds it follows that r/>f 0 (see for instance ref. [ 20]), an inequality that 
is also required if the continuum theory is to be Osterwalder-Schrader posi- 
tive; of course logarithmic corrections to the pure power behavior assumed 
in Eq. (29) are legitimate, provided they correspond to a stronger divergence 
of Z than in the free Gaussian model. In all these cases the Ornstein-Zernike 
behavior leads to the same conclusions as our other considerations. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We have seen that fixing a finite number of spins has no effect on the 
continuum limit in a box of finite physical size or in the infinite volume. 
This is to be contrasted with the claim made by David (5) in a comment to 
our papers. ~4' 6) David claimed that fixing a spin at the origin in addition 
to Dirichlet b.c. (imposing s.i.b.c.) will necessitate extra renormalizations; 
as we have seen here, there is no effect of the extra spin on the continuum 
limit. So if in fact in perturbation theory one finds the need for such an 
extra renormalization, then this is just another proof that perturbation 
theory does not produce the correct asymptotic expansion in these models. 

Furthermore we have learned that in the continuum limit the system 
gets disordered on the scale of the correlation length, in the sense that spins 
located at a fixed finite fraction of the correlation length will become 
decorrelated and this phenomenon even occurs in a box of finite physical 
size. This is in accordance with the properties of continuum quantum fields 
known from axiomatic quantum field theory. We have learned there long 
ago that continuum quantum fields and their correlations are never func- 
tions, but have distributional character, in other words there are large fluc- 
tuations at short continuum distances. So if the phenomena found here did 
not occur, there would be no chance to have a continuum limit satisfying 
e.g. the Osterwalder-Schrader axioms. (2~) 
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In refs. [4, 6] we pointed out the importance of certain "defects" 
dubbed super-instantons in disordering the O(N) models at large ft. These 
are configurations that turn the spin gradually from a certain value in the 
center of a region to a different one at its edge; we stressed that these con- 
figurations require arbitrarily little energy and have entropy corresponding 
to their position and scale; therefore they should be abundantly present 
even at low temperature. Here we found that at the scale of the correlation 
length, constraining the spin at the center has no effect. This is also a 
manifestation of the fact that super-instantons become so abundant in 
the continuum limit that they disorder the system even at the scale of the 
correlation length, and thus forcing an extra super-instanton into the 
system has no effect. 

There is a useful lesson to be drawn from our observations: since we 
now know that in the continuum limit fixing a finite number of spins 
cannot have any effect, by doing precisely this and checking how much the 
physics changes, we can assess how close our results are to the true con- 
tinuum limit. This is of relevance in particular in studies where small lat- 
tices are used to extract information about the presumed continuum limit; 
notable examples are the work of the "Alpha collaboration" ~2) studying the 
running coupling, the work by Kim ~22) and by Caracciolo et aL (23) o n  finite 
size scaling in the O(3) model. Some of the claims made there were studied 
by as more quantitatively in ref. [ 3 ], with the conclusion that typically the 
lattices used were too small to see the true continuum behavior. Our 
findings in the present paper are also relevant for various claims which 
have appeared in the literature regarding the miraculous properties of the 
improved/perfect actions in simulating continuum physics already at rather 
small correlation lenghts. ~'24) We would like to state here that this type of 
claims, that on lattices of modest size the lattice fields can show true con- 
tinuum behavior, are in our opinion false: whatever the action may be, the 
lattice must be large enough to allow the typical configuration to resemble 
a gas of super-instantons, i.e. to restore a certain symmetry required by the 
Gibbs measure. 

Given a lattice model, there exists in principle the possibility to con- 
struct a perfect (lattice) action for it: one constructs first the continuum 
limit, then blocks the continuum theory, thus deriving a perfect action 
(describing the interaction of the block spin variables) and perfect (con- 
tinuum) variables (defined in terms of the block variables). From a practi- 
cal point of view, this procedure is clearly useless since its implementation 
requires prior control of the contiuum limit. 

The necessity of using sufficiently large lattices applies equally to 
gauge theories. Contrary to the claim of the "Alpha Collaboration" and its 
precursors, we believe that their data on the running of ~s(Q) do not reveal 
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the true continuum behavior of QCD. Indeed for example the study of this 
running in SU(2) (2) involves lattices with L~<20 and fl~<3, a regime in 
which the typical configuration corresponds to small fluctuations around a 
well ordered state, rather than a gas of super-instantons; this explains also 
the excellent agreement they found in the running of 0~s(Q) with the predic- 
tion of perturbation theory. 
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